Supervised Kernel Principal Component Analysis by Most Expressive Feature Reordering

نویسندگان

  • Krzysztof Ślot
  • Krzysztof Adamiak
  • Piotr Duch
  • Dominik Żurek
چکیده

The presented paper is concerned with feature space derivation through feature selection. The selection is performed on results of kernel Principal Component Analysis (kPCA) of input data samples. Several criteria that drive feature selection process are introduced and their performance is assessed and compared against the reference approach, which is a combination of kPCA and most expressive feature reordering based on the Fisher linear discriminant criterion. It has been shown that some of the proposed modifications result in generating feature spaces with noticeably better (at the level of approximately 4%) class discrimination properties. Keywords—feature selection, kernel methods, pattern classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Supervised Kernel Locally Principle Component Analysis for Face Recognition

In this paper, a novel algorithm for feature extraction, named supervised kernel locally principle component analysis (SKLPCA), is proposed. The SKLPCA is a non-linear and supervised subspace learning method, which maps the data into a potentially much higher dimension feature space by kernel trick and preserves the geometric structure of data according to prior class-label information. SKLPCA ...

متن کامل

Unsupervised Nonlinear Feature Extraction Method and Its Effects on Target Detection in High-dimensional Data

The principal component analysis (PCA) is one of the most effective unsupervised techniques for feature extraction. To extract higher order properties of data, researchers extended PCA to kernel PCA (KPCA) by means of kernel machines. In this paper, KPCA is applied as a feature extraction procedure to dimension reduction for target detection as a preprocessing on hyperspectral images. Then the ...

متن کامل

Regaining sparsity in kernel principal components

Support Vector Machines are supervised regression and classification machines which have the nice property of automatically identifying which of the data points are most important in creating the machine. Kernel Principal Component Analysis (KPCA) is a related technique in that it also relies on linear operations in a feature space but does not have this ability to identify important points. Sp...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015